
In Structural Dynamics: Recent Advances, Proceedings of the 7th International
Conference, Vol. II, Ed. Ferguson, Wolfe, Ferman, Rizzi, 2000, pp. 833 – 846.

COMPARISON OF NONLINEAR RANDOM RESPONSE USING
EQUIVALENT LINEARIZATION AND NUMERICAL SIMULATION

Stephen A. Rizzi† and Alexander A. Muravyov‡

NASA Langley Research Center
Structural Acoustics Branch
Hampton, VA 23681-2199

ABSTRACT
A recently developed finite-element-based equivalent linearization approach
for the analysis of random vibrations of geometrically nonlinear multiple
degree-of-freedom structures is validated.  The validation is based on
comparisons with results from a finite element based numerical simulation
analysis using a numerical integration technique in physical coordinates.   In
particular, results for the case of a clamped-clamped beam are considered for
an extensive load range to establish the limits of validity of the equivalent
linearization approach.

INTRODUCTION
Current efforts to extend the performance and flight envelope of high-speed
aerospace vehicles have resulted in structures which may respond to the
imposed loads in a geometrically nonlinear (large deflection) random fashion.
This type of behavior can significantly degrade the structural fatigue life.
Linear prediction techniques currently used in the design process are grossly
conservative and provide little understanding of the nonlinear behavior.
Without practical design tools capable of capturing the important dynamics,
further improvements in vehicle performance and system design will be
hampered.

Methods currently used to predict geometrically nonlinear random response
include perturbation, Fokker-Plank-Kolmogorov (F-P-K), numerical
simulation and stochastic linearization techniques.  All have various
limitations.  Perturbation techniques are limited to weak geometric
nonlinearities. The F-P-K approach [1, 2] yields exact solutions, but can only
be applied to simple mechanical systems.  Numerical simulation techniques
using numerical integration provide time histories of the response from which
statistics of the random response may be calculated.  This, however, comes at
a high computational expense due to the long time records or high number of
ensemble averages required to get quality random response statistics.
Statistical linearization methods (e.g. equivalent linearization (EL), see [2-6])
have seen the most broad application because of their ability to accurately
capture the response statistics over a wide range of response levels while
maintaining relatively light computational burden. Implementations of
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statistical linearization methods have been primarily limited to special purpose
“in-house” computer codes.  The first known implementation in a general-
purpose code was developed in [7] using MSC/NASTRAN.   In this study, an
alternative implementation of EL based on the methods developed in [8] and
[9] will be used.  This implementation was previously validated using the F-P-
K method for a few special cases including a Duffing oscillator and beam
structure under a convenient, but non-physical loading condition.  In the
present study, results from the EL analysis will be compared with those from a
finite element based numerical simulation analysis for the case of a clamped-
clamped beam under random inertial loading.  By studying a wide range of
load levels, the range of applicability is established.

EQUIVALENT LINEARIZATION APPROACH
The equations of motion of a multiple degree-of-freedom, viscously damped
geometrically nonlinear system can be written in the form:

MX t CX t KX t X t F t��( ) � ( ) ( ) ( ( )) ( )H H H Zd (1)

where M , C , K  are the mass, damping, and stiffness matrices, X  is the
displacement response vector and F  is the force excitation vector,
respectively.  The nonlinear stiffness term d( )X  is a vector function which
generally includes 2nd and 3rd order terms in X .  An approximate solution to
(1) can be achieved by formation of an equivalent linear system:

MX t CX t K K X t F te
��( ) � ( ) ( ) ( ) ( )H H H Z (2)

where Ke  is the equivalent linear stiffness matrix.

The traditional (force error minimization) method of EL seeks to minimize the
difference between the nonlinear force and the product of the equivalent linear
stiffness and displacement response vector.  Since the error is a random
function of time, the required condition is that the expectation of the mean
square error be a minimum, i.e.:

error E X K X X K Xe
T

eZ J J Ã( ( ) ) ( ( ) ) mind d (3)

where E ...  represents the expectation operator.  Equation (3) will be satisfied
if
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In this study, consideration is limited to the case of Gaussian, zero-mean
excitation and response to simplify the solution.  With these assumptions and
omitting intermediate derivations, the final form for the equivalent linear
stiffness matrix becomes (see for example [3] and [4]):
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An alternative approach based on potential (strain) energy error minimization
was proposed in [5] and [6], where mostly single degree-of-freedom systems
were considered.  A generalization for multiple degree-of-freedom systems is
developed in [8] and [9]. For the sake of brevity, the present paper will present
the formulation and results from the force error minimization only.

Applying the modal coordinate transformation

X q� �

to equation (2) yields a set of coupled modal equations with reduced degrees
of freedom, where �  is generally a subset (L N� ) of the linear eigenvectors,
and q are the modal coordinates.  This coupled set is expressed as:
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where ω r  are the undamped natural frequencies, [ ]I  is the unit matrix, [2 ]ζ ωr r

is the diagonal modal damping matrix, ω r
2  is the diagonal modal stiffness

matrix, and ke  is the fully populated equivalent stiffness matrix given by:
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The nonlinear terms may be represented in the following form:
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where a jk
r  and bjkl

r  are nonlinear stiffness coefficients with j  = 1,2,…,L,  k = j,

j+1,…,L, and l = k, k+1, …,L.  This form of the nonlinear terms facilitates the
solution of equations (5) when the forces and displacements are random
functions in time.

Iterative Solution

Because the equivalent stiffness matrix ke  is a function of the unknown modal
displacements, the solution takes an iterative form.  The time variation of the
modal displacements and forces may be expressed as:

q t q e f t f er r
i t

n
r r
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where (^) indicates the dependency on ω n .  Applying (8) to (5) and writing in
iterative form gives:

� �q H fm m� -1 (9)

where m is the iteration number and
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The introduction of the weightings α  and β  are to aid in the convergence of
the solution, with the condition that α β� � 1.

For stochastic excitation, (9) is rewritten as:

Sqq
m m

ff
m T

H S H� - -1 1 (11)

and
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The diagonal elements of Sqq
m  are the variances of the modal displacements.

For the first iteration, ke  is zero yielding the covariance matrix E q qr s  of the

linear system.  For subsequent iterations (m>1), ke
m  is determined from (6)

as:
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where (from (7)),
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Recall a zero-mean response is assumed, i.e. E q[ ] � 0 , which reduces (13) to:
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The iterations continue until convergence of the equivalent stiffness matrix
such that

k ke
m

e
m� �-1 ε

The value of ε  typically used is 0.1%. Following convergence, the NxN
covariance matrix of the displacements in physical coordinates is recovered
from

E X X E q qi j r s
T� � � (15)
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and root-mean-square values are the square roots of the diagonal terms in (15).
Further post-processing to obtain power spectral densities of displacements,
stresses, strains, etc., may be performed by substituting the converged
equivalent stiffness matrix into (5) and solving in the usual linear fashion.

Implementation
The EL procedure as outlined above was recently implemented within the
context of MSC/NASTRAN using the DMAP programming language [10].
The implementation entails first performing a normal modes analysis (solution
103) to obtain the modal matrices, from which a subset of L modes are chosen.
Since the form of the nonlinear stiffness terms are not explicitly known, the
nonlinear stiffness coefficients a jk

r  and bjkl
r  must be determined numerically.

To accomplish this, a series of inverse problems are performed by prescribing
displacement fields as linear combinations of modes to the linear static
(solution 101) and nonlinear static (solution 106) solutions.  The nonlinear
stiffness coefficients are then determined from the resulting linear and
nonlinear nodal forces.  The process by which this is done is covered in detail
in [8] and [9].   The iterative solution is performed within a standalone DMAP
alter, which has as its output the root-mean-square displacements in physical
coordinates, the cross covariance in modal coordinates, and the sum of the
linear and equivalent linear modal stiffness matrices.  The latter may by
substituted for the linear modal stiffness in the modal frequency response
analysis (solution 111) for post-processing.

NUMERICAL SIMULATION APPROACH
A numerical simulation analysis was performed to generate time history
results from which response statistics could be calculated.  The particular
method used was finite element based with the integration performed in
physical coordinates.  Two different integration methods were used depending
on the response level.  For lower level responses, an implicit integration
method was taken which allowed for larger time steps compared with the
explicit method.  Because the implicit scheme is unconditionally stable, a
convergence study on the time step was undertaken at each response level to
ensure adequacy of the time step.   This was done by halving the at  used until
the time history response over the calculation period was unchanged.  As the
response level became higher at the higher excitation levels, the at  required to
obtain a converged solution became smaller.  When the at  required was on
the order of the time step required for the explicit method, it became more
efficient to perform the explicit integration.  Both methods produced identical
results, so the particular choice of implicit versus explicit was dictated solely
by the time required to run each analysis.  In both the implicit and explicit
methods, the nonlinear deformation was handled using a corotational scheme
[11].  The program NONSTAD [12] was used to generate the numerical
simulation results.
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Loading Time History
The time history of the load was generated by summing equal amplitude sine
waves with random phase within a specified bandwidth using a discrete
inverse Fourier transform.   This generated a pseudo-random time history with
a specified amplitude and period T .  The period was specified by 2n ta .  In
this study, at  = 50 ←s  and n  = 16, giving a period of 1.6384s  in duration.
The selected at  corresponded with that needed for the implicit integration
scheme used for the lower loading levels.  The explicit integration scheme
used for the higher load levels interpolated the signal between points such that
the specified loading at each at  interval was maintained.  A radix-2 number of
time history samples was chosen to facilitate use of radix-2 FFT algorithms
employed for the subsequent analysis.   An ensemble of time histories was
generated by specifying different seeds to the random number generator.

A typical time history corresponding to an inertial load of 0.05g RMS is
shown in Figure 1.  The corresponding probability density function is also
shown with the Gaussian distribution.  The power spectral density for 10
ensemble averages gives a spectrum level of 167 10 6. “

J  g2/Hz over a 1500 Hz
bandwidth as shown.  A sharp roll-off of the input spectrum practically
eliminates excitation of the structure outside the frequency range of interest.

Transient Response Processing
The structure is assumed to be at rest at the beginning of each loading.  An
initial transient in the structural response is therefore induced before the
response becomes fully developed.  This transient must be eliminated to
ensure the proper response statistics are recovered.

The approach taken to eliminate the transient is shown graphically in Figure 2.
Because the loading is pseudo-random, it is possible to apply multiple periods
of the load and generate the same statistics for periods of length T  beginning
at any point in time.  For example, the statistics of the load are the same for
the period 0 – T  as they are for the period T 4 – 5 4T .  In a like manner, for
the linear condition, the response statistics are the same for any period T
following the initial transient.  Therefore, by computing the desired statistic
for a moving window of period T , it is possible to identify a point in time to

after which the response statistics do not change significantly.  In the present
study, the root-mean-square response was monitored and a time of t so Z 0 5.
was found suitable.  For each loading history, a total response of
T s sH Z05 21384. .  was calculated and the first 0 5. s  was discarded.  Note that a
similar argument for the nonlinear condition does not hold because the
nonlinear response is not periodic over T .  Nevertheless, the above approach
was employed with satisfactory results.
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Response Statistics
Response statistics were generated from an ensemble of N=10 time histories at
each load level.  Estimates of the displacement root-mean-square served as the
basis for comparison with the EL method, which essentially had the RMS as
its basic unknown. Additionally, confidence intervals for the mean value of
the RMS estimate were generated to quantify the degree of uncertainty in the
estimate [13] using:

x
st

N
x
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n Nn n
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n n
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L
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O
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wherex  and s2  are the sample mean and variance of the RMS estimates from
N ensembles, and tn  is the Student t distribution with n degrees of freedom,
evaluated at ∼ / 2.  For the 90% confidence intervals calculated, ∼ Z 01. .

Estimates of the displacement mean, skewness, and kurtosis were also
computed to help ascertain the degree to which the assumptions made in the
development of the equivalent linearization method were followed. Power
spectral density and probability density functions of the displacement were
computed for similar purposes.

RESULTS
Validation studies were conducted using an 18-in. x 1-in. x 0.09in. (l x w x h)
clamped-clamped aluminum beam with material properties:
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The beam was subjected to an inertial loading over a computational bandwidth
of 1500 Hz, as shown in Figure 1.  This bandwidth was in excess of the
desired bandwidth of 1000 Hz to allow for the contribution of the higher order
modes in the EL solution.  This is especially important for capturing the anti-
resonant behavior. The numerical simulation analysis utilized the same
loading for consistency, although the effect of the higher order modes are
automatically realized since the computations are performed in physical
coordinates. Since the loading was uniformly distributed, only symmetric
modes were included in the analysis.  In general, any combination of
symmetric and non-symmetric modes may be included.

The NASTRAN model used in the EL analysis was comprised of thirty-six ½-
in. long CBEAM elements.  The EL analysis used a four-mode solution
comprised of the first four symmetric bending modes. Damping was chosen to
be consistent with the mass-proportional damping of the numerical simulation
analysis and at a level sufficiently high so that a good comparison could be
made at the peaks of the PSD.  This dictated a critical damping of 2.0%,
0.37%, 0.15%, and 0.081% for the first four symmetric modes.  The finite
element model used in the numerical simulation analysis was also comprised
of thirty-six ½-in. long beam elements.   Both EL and simulation finite
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element models were checked for convergence by running additional analyses
with models consisting of ¼-in. elements.

Analysis was performed at load levels of 0.8, 3.2, 12.8, 51.2, and 204.8 g
RMS,  giving a dynamic range of 48 dB.   Figure 3 shows the normalized
RMS out-of-plane (w) deflection at the beam center as a function of load level.
The numerical simulation results are shown with 90% confidence intervals of
the RMS estimate.  At the lowest load level of 0.8 g RMS, the response is
linear as can be seen by the comparison with results from a strictly linear
analysis (NASTRAN solution 111).   A small, but noticeable, difference
between the linear and nonlinear response is noted at the 3.2g RMS load level.
The degree of nonlinearity increases with load level, as expected.  At the
highest load level, the nonlinear response calculations predict a RMS center
deflection of 2.5 times the thickness compared with the nearly 11 times the
thickness from the linear analysis.

In order to gain greater insight into the nonlinear dynamics, plots of the time
history, PSD, and PDF are shown for three load levels, 0.8, 51.2 and 204.8g
RMS, in Figure 4 through Figure 6, respectively.  Data in the time history and
PDF plots correspond solely to numerical simulation results.  Data in the PSD
plots correspond to numerical simulation and EL results, where the EL results
were generated by running a linear analysis (NASTRAN solution 111) using
the equivalent linear stiffness generated by the EL process described above.
Also shown in the figures are plots of the normalized RMS deflection shape
for both numerical simulation and EL analyses.

Results for the 0.8g RMS excitation level are shown in Figure 4.  This
excitation level was shown (see Figure 3) to produce a linear response.  As
expected, the PDF mimics the normally distributed PDF of the input shown in
Figure 1. The averaged PSD and normalized deflected shape show excellent
agreement between the EL and numerical simulation results.  This agreement
helps to establish the confidence in making comparisons between these two
fundamentally different analyses.

Figure 5 shows a nonlinear response associated with the 51.2g RMS excitation
level.  The time history of the center displacement has a visibly higher peak
probability and the PDF exhibits a flattening at the peak.  The PSD from both
the numerical simulation and EL analyses both show the shifting of peaks to
higher frequencies compared with the linear solution.  This shifting is
associated with a hardening spring type of nonlinearity.  Note that the
frequencies associated with the peaks of the EL solution are the natural
frequencies of the equivalent linear system.  The numerical simulation results
correctly show the peak broadening effect, which the EL analysis is unable to
capture.  Also distinguishable in the numerical simulation results are
contributions of harmonics.  The effect of nonlinearity is somewhat over
predicted in the EL result, as seen in the normalized deflection shape.
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The highest degree of nonlinearity is shown in Figure 6, corresponding to the
204.8g RMS load.  The time history is further peak oriented and the PDF is
nearly flat.  The peak broadening in the PSD of the numerical simulation
results is severe, and nearly flattens the spectrum above 350 Hz.  Of particular
interest is flattening of the normalized deflection shape, which both the EL
and numerical simulation results reflect.  This is likely to have a significant
effect on the strain distribution.  It is unclear why the results at the 204.8g
RMS load level compare more favorably than those at the 51.2g RMS level.
This behavior warrants further investigation.

Moments of the center displacement were calculated from the numerical
simulation results for all load levels.  They are provided in Table 1 with the
RMS center displacement from the EL analysis.   The EL and numerical
simulation results agree well, thus validating the EL analysis over a substantial
load range.  The validity of assumptions made in the development of the EL
method are ascertained by observing the mean, skewness and kurtosis.  The
mean value is effectively zero for all load levels, indicating the assumption of
zero mean response has not been violated.  Although the PDF is more or less
skew-symmetric, the shape is flattened at the higher load levels as indicated by
a decreasing kurtosis from the linear value of 3.  The decreasing kurtosis
values indicate a violation of the Gaussian response assumption.  However,
even with this non-Gaussian response distribution, the EL analysis gives a
good prediction of the RMS response.

Table 1: Moments of the center displacement.

Load
(g)RMS

Mean (in.) EL
RMS
(in.)

Numerical Simulation RMS
(90% Confidence Interval)

(in.)

Skewness Kurtosis

0.8 -6.54x10-8 0.0038 0.00379 ¡ RMS < 0.00381 0.0197 3.05
3.2 -5.26x10-6 0.0147 0.01438 ¡ RMS < 0.01532 0.0190 2.82
12.8 -1.62x10-5 0.0458 0.04680 ¡ RMS < 0.05350 -0.0017 2.47
51.2 -4.93x10-6 0.1078 0.11268 ¡ RMS < 0.12325 -0.0002 2.25
204.8 3.78x10-4 0.2285 0.21654 ¡ RMS < 0.23216 -0.0058 2.29

DISCUSSION
The RMS random response predictions from the EL implementation have been
validated through a wide range of load levels.  Comparisons with numerical
simulation results are good, even when the assumption of Gaussian response
has been violated.

Differences that do exist warrant some discussion.  It is seen that the EL
approach slightly over-predicts the degree of nonlinearity compared to the
numerical simulation results.  This does not appear to be due to a violation of
the assumption of a Gaussian response because the over-prediction does not
correlate with increasing kurtosis of response.  The likely reason for the
difference is in the error minimization approach used.  Results previously
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computed using the alternative strain-energy error minimization technique, not
included here, indicated better comparison with the exact F-P-K solution than
the conventional force-based error minimization undertaken here [9].  The
improved comparison of strain-energy error minimization and simulation
results was also seen in a different EL implementation for the problem of a
beam on an elastic foundation [6].  The strain-energy analysis is beyond the
scope of this paper and is left as an area for further investigation.

Some implications on the use of the EL technique as a basis for fatigue life
calculations are worth mentioning.  First, assuming that stresses or strains
from the EL technique will compare equally well with the fully nonlinear
results, a simple fatigue-life calculation based on RMS levels will be much
less conservative than calculations based on linear analyses.  This offers the
potential for substantial weight savings for structures designed using nonlinear
methods. Secondly, it appears that a nonlinear analysis, EL or otherwise, is
required to accurately calculate the RMS deflected shape.  Use of a linear
RMS deflected shape scaled to the nonlinear level would inaccurately reflect
the spatial distribution.  Simple fatigue-life calculations based on the RMS
stress or strain could be significantly affected as these quantities depend on the
spatial distribution of the deformation.  Lastly, use of the EL derived PSD
response in a more sophisticated fatigue-life calculation requires careful
investigation.  Recall that peaks in the equivalent linear PSD may occur at
different frequencies than the fully nonlinear PSD, as shown in Figure 5 and
Figure 6.  Methods such as spectral fatigue analysis [14], which take moments
of the PSD, may incorrectly account for the contribution a particular frequency
component in the cycle counting scheme.  It is not known, for example, if the
narrowly shaped, higher fundamental frequencies of the equivalent linear PSD
result in conservative or non-conservative estimates of fatigue life relative to
predictions made using the fully nonlinear PSD with more broadly shaped,
lower fundamental frequencies.  An assessment of this effect is left as an area
for further study.

The question of computational efficiency has not been addressed in this paper
because the differing analyses were performed on different computer
platforms.  What can be stated is that the computational burden for the EL
approach will increase only slightly with an increase in the size of the physical
model for the same number of modes used in the solution.  This increase is
associated with the solution of a larger linear eigenvalue problem.  The
expense of the numerical simulation solution, however, will increase
dramatically with an increase in physical system size.
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Figure 1: Typical loading time
history, probability density, and

power spectral density.
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Figure 2: Transient response
processing.
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Figure 4: Center deflection
response and normalized deflection

shape at 0.8g RMS inertial load.
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Figure 5: Center deflection
response and normalized deflection
shape at 51.2g RMS inertial load.
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Figure 6: Time history, PSD, and PDF of center deflection response and
normalized deflection shape at 204.8g RMS inertial load.
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